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Abstract

The geometry of a modern imaging diffractometer is
discussed in detail. A method to ®nd all relevant
instrument parameters from the control single-crystal
measurement data is proposed and the limitations of
such a procedure are indicated. Optimization of the
instrument parameters by the least-squares method is
presented.

1. Introduction

The present generation of modern single-crystal
diffractometers is more and more frequently equipped
with position-sensitive detectors. The overall instrument
design varies and is tailored towards the speci®c
experimental requirements (accuracy, resolution, speed,
sensitivity, wavelength range etc.). Most of the systems
are clearly optimized for macromolecular studies and
consist of a greatly simpli®ed goniostat (sometimes with
only one degree of rotational freedom) and the largest
possible imaging detector optimized for a speci®c
radiation wavelength.

A new kind of design has emerged recently. It is based
on a conventional goniometer, usually of � geometry,
but with a compact position-sensitive detector replacing
the previously used scintillation point detector. The
compact position-sensitive detector is based on a
detection scheme where an X-ray-sensitive scintillation
layer is applied to a ®ber-optic reduction taper which is
coupled to a charge-coupled device (CCD) imaging
detector. Such a scheme allows an overall compact
detector design with X-ray sensitive area of 5000 to
12 000 mm2.

The four-circle imaging goniometer discussed in this
paper has three degrees of rotational freedom for the
sample orientation and one degree of freedom for the
detector swing. Fig. 1 gives a top and a side view of this
type of �-goniometer with a position-sensitive detector.
This orientational ¯exibility allows the ef®cient mea-
surement of data sets to high resolution (�-swing) and to
full completeness (crystal orientation).

As on any diffractometer system, the quality of the
collected data depends on the mechanic and electronic
precision of the hardware and, to the same degree, on
the precision of the mathematical model used to extract
the data. The presence of a position-sensitive detector
increases the complexity of such a model and requires a
new type of calibration technique. Part of this calibra-
tion is the evaluation of the geometric distortions
related to the position-sensitive detector itself. For the
discussion in this paper, this type of detector is assumed
to be distortion free [see Paciorek et al. (1999) and
references therein for more details].

The calibration of goniometers with position-sensitive
detectors has been treated in various articles (Arndt &
Wonacott, 1977; Bricogne, 1986; Diamond, 1990;
Kabsch, 1988; Thomas, 1990, 1992; Tucker, 1986; Wil-
kinson, 1990, and references therein). The cited litera-
ture does not provide all necessary expressions for a
least-squares optimization of a general goniometer
model of the type of instrument described above.

In this paper, an attempt is made to extend a common
calibration process known from conventional single-
crystal diffractometry to this new type of imaging
diffractometer. The problem studied here is to evaluate
to what extent a reference crystal measurement can be
used to verify or even determine the parameters of the
geometrical model of the system.

2. Matrix derivatives

To achieve a concise presentation of the results in all
subsequent sections, selected results from matrix
analysis are presented here. Although all standard
formulae from the matrix algebra are commonly used in
the crystallographic literature, this seems not to be the
case for the matrix analysis.

Let us consider an arbitrary matrix with elements
depending on one or more variables. The ®rst de®nition
is a derivative matrix:

@xA � �@xAij�; �1�
where x is a generic name for a variable.

Differentiation of this kind obeys a noncommutative
chain rule:
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@x�AB� � @xAB�A@xB �2�
and other familiar rules of differentiation. The useful
relation below extends the familiar inverse function
differentiation:

@xAÿ1 � ÿAÿ1@xAAÿ1: �3�
It is used both to simplify expressions and to avoid
symbolic matrix inversion.

A frequent calculation is the normalization of a vector
and the simultaneous calculation of its derivatives. A
very useful expression to achieve both is:

@x�v=kvk� � M@xv; �4�
where the following matrix

M � �Iÿ vvt=vtv�=kvk �5�
is calculated once and used to normalize all partial
derivatives of the given vector.

Another useful expression is the differentiation of
scalar, vector and matrix functions with respect to
variables arranged themselves in vectors. The most
common example is

@x�Ax� � At; �6�
a special case of which is the differentiation of the scalar
product:

@x�a � x� � a: �7�
A vector product provides an example of another kind
of differentiation:

@x�a� x� � Aa; �8�
where

Aa �
0 ÿaz ay

az 0 ÿax

ÿay ax 0

0@ 1A; �9�

where ax, ay and az are the components of a. The result
is thus a tensor of higher rank. In this case, it is a skew-
symmetric tensor associated with the vector a and is
an important part of the general rotation operator
decomposition. Another important property of the
matrix above is

Aax � a� x; �10�
where x is an arbitrary vector.

Some least-squares-optimization problems are
formulated and solved by using matrix or vector differ-
entiation. The objective function is a scalar one but
parameters are naturally arranged in vectors or matrices.

The ®rst common example of a differentiation with
respect to a matrix is

@A det�A� � det�A�Aÿ1 � adj�A�; �11�
which is frequently used at an intermediate step of
formula derivation.

Two important applications used in this paper are the
following least-squares residuals:

@xkAxÿ bk2 � 2At�Axÿ b�; �12�
@AkAxÿ bk2 � 2�Axÿ b�xt; �13�

where equation (12) is the familiar linear least-squares
problem. Equation (13) occurs when the model param-
eters are included in the matrix rather than in the vector.
Both problems are solved by equating the above equa-
tions to zero and solving for a vector or a matrix,
respectively.

We conclude this section with a brief account on one
of the most useful algorithms of linear algebra,
embedded in many computations (like solving linear
least-squares problems), the QR decomposition.

Every square matrix can be decomposed into a
product of two matrices:

Fig. 1. (a) Side and (b) top views of the KM4CCD system, a �
goniometer with CCD area detector. The laboratory reference
system ex, ey, ez is indicated: ez coincides with the !-rotation axis, ex

points in the direction of the X-ray source and ey completes the
right-handed coordinate system. The positive sense of rotation is
given for all instrument axes.
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A � QR; �14�
where the ®rst is orthogonal:

Qt � Qÿ1; �15�
and the second upper triangular:

Rij � 0; i> j: �16�
In general, this decomposition is not unique. By
restricting to nonsingular matrices, one can always ®nd a
decomposition with all diagonal elements of the trian-
gular factor positive. The geometrical interpretation of
this decomposition will become apparent while
discussing properties of the familiar orientation matrix.

Algorithms of the QR decomposition can be found in
Golub & Van Loan (1996).

3. Orientation matrix

The concept of the orientation matrix is well known and
established in single-crystal diffractometry. A brief
account is given here as this concept will be used later on
not only to handle the geometrical relationship between
the reciprocal lattice of the crystal and the diffrac-
tometer but also for the geometry of the imaging
detector.

The classical de®nition of the orientation matrix is the
product of two matrices (Busing & Levy, 1967):

r � UB�h; �17�
where both matrices obey the QR decomposition
requirement and

h � �h; k; l�t �18�
are the integer Miller indices of a reciprocal-lattice
point, considered here as special values of general
fractional coordinates. The subscript � indicates a
possible common practice to scale dimensions in the
reciprocal space by the wavelength.

The Euclidean length of the vector is

krk2 � htG�h; �19�
revealing the relationship between the orthonormaliza-
tion matrix and the metric tensor (Prince, 1994):

G� � Bt
�B�: �20�

From the above, it is apparent that this matrix can also
be evaluated from the metric tensor alone as its
Cholesky factor.

The inverse and transpose of the orthonormalization
matrix:

Lt
� � Bÿ1

� �21�
is used to compute the fractional coordinates from the
Cartesian ones:

ht � rtUL�: �22�

In subsequent expressions, we will need simultaneously
both of them.

If both kinds of coordinates are known for a large set
of points, the optimal orientation matrix can be found by
minimizing the least-squares residual:

�2 �P
n

kUB�hn ÿ rnk2; �23�

reaching a minimum if the required matrix is

UB� � RHÿ1; �24�
where

R �P
n

rnht
n; �25�

H �P
n

hnht
n: �26�

Equation (13) from the preceding section is used to give
an immediate solution.

To facilitate matrix derivative calculations, the
orthogonalization matrix can be further decomposed
into the following product:

B� � S diag��a�; �b�; �c��; �27�
where

S �
1 cos � cos��

0 sin � ÿf

0 0 v= sin �

0@ 1A �28�

is the general shear matrix dependent only on the
angular variables.

Its analytical inverse is

Sÿ1 �
1 ÿ cot � g=v

0 1= sin � f=v

0 0 sin �=v

0@ 1A: �29�

Both matrices are de®ned by three simple trigonometric
functions:

f � �cos�� cos � ÿ cos ���= sin �; �30�
g � �cos �� cos � ÿ cos���= sin �; �31�
v2= sin2 � � sin2 �� ÿ f 2 � sin2 �� ÿ g2: �32�

From the above equations, all matrix derivatives are
easily computed. In the subsequent sections, the above
decomposition will be used to handle both the crystal
and the detector orientation with respect to the
laboratory coordinate system (Wilkinson, 1990).

4. Rotation decomposition

Any rotation can be decomposed into the product of
three other rotations around two or three mutually non-
parallel axes. The case when two axes suf®ce is the well
known Euler angles representation.

For the re®nement of the orientation, it is convenient
to represent an arbitrary rotation by a product of
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elementary rotations around the given coordinate-
system axes. This representation is preferred over the
general axis and angle form because it facilitates the
re®nement of the rotation axis.

Let us consider an arbitrary rotation matrix and
derive an algorithm to represent it by the following
product:

U � Rz�'z�Ry�'y�Rx�'x�; �33�
where the elementary rotations are de®ned as:

Rx �
1 0 0

0 cos 'x sin 'x

0 ÿ sin 'x cos 'x

0B@
1CA; �34�

Ry �
cos 'y 0 ÿ sin 'y

0 1 0

sin 'y 0 cos'y

0B@
1CA; �35�

Rz �
cos'z sin 'z 0

ÿ sin 'z cos 'z 0

0 0 1

0B@
1CA: �36�

Such a decomposition is not unique but this is not
important for the problem considered here.

The general solution has already been given in the
crystallographic literature and only a brief account and
the ®nal results are given here.

The ®rst step is to use the known eigenequation to
isolate the inner rotation:

et
zUex � Ry�'y�; �37�

to obtain an equation for the required angle:

'y � sinÿ1�U31�; �38�
which has two possible solutions.

In order to ®nd the other two angles, the degenerate
case de®ned by the following condition:

Ry�'y�ex 6� �ez �39�
has to be checked for. If this condition is satis®ed, the
®nal solution reads:

'x � tanÿ1�ÿU32;U33�; �40�
'z � tanÿ1�ÿU21;U11�: �41�

Otherwise, one rotation becomes unde®ned and can be
set arbitrarily to zero. The ®rst choice is

'z � tanÿ1�U12;U22�; 'x � 0; �42�
and the second one is

'x � tanÿ1�U23;U22�; 'z � 0: �43�
The method above can be extended to three arbitrary
rotations, not necessarily around the coordinate-system
axes.

Rotations can also be represented by quaternions of
the form (Spena, 1993)

q � �cos�'=2�; n sin �'=2��; �44�
where n is a unit vector along the rotation axis. Vectors
and scalars are represented by quaternions of the special
form

r � �0; r�; c � �c; 0�: �45�
The rotation of a vector is de®ned as

v � q � r � qÿ1: �46�
The quaternion representation of rotations has already
been used in crystallographic literature for deriving
space groups (Bernal, 1923) and to solve an important
problem of handling a goniometer with arbitrary
geometry (Diamond, 1990).

The following problem, closely related to the �
goniometer, demonstrates a useful property of
quaternions as an analytical tool when dealing with
general rotations.

Assume that the rotation axis n is de®ned by another
vector e rotated by a known rotation, and both are
represented by quaternions:

qm � �cos � =2�;m sin � =2�� �47�
and

n � qm � e � qÿ1
m : �48�

Assume that it is desirable to express the former rota-
tion by the new parameters only. Let us compute the
following quaternion:

q � qm � qÿ1
m cos �'=2� � qm � e � qÿ1

m sin �'=2�: �49�
As the scalar multiplication commutes with the
quaternion product, it is easy to show that

qn � qm � qe � qÿ1
m ; �50�

where

qe � �cos �'=2�; e sin �'=2��: �51�
Thus the former rotation is now represented by a
product of three rotations around axes of our choice.

Presenting this result by conventional rotation
matrices, we arrive at the equation

Rn�'� � Rm� �Re�'�Rÿ1
m � �; �52�

where

n � Rm� �e: �53�
The above result (or its special case) is frequently used
to describe rotations on the � goniometers, as at least
one rotation axis is arbitrary. It is common practice to
prefer rotations around laboratory-coordinate-system
axes.

Another form of the rotation operator is based on the
Cayley±Klein theorem and can be written as
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Rn�'� � Pn �An sin 'ÿA2
n cos '; �54�

where

Pn � P2
n � nnt �55�

is an example of a projection operator. In this form, the
rotation angle is clearly separated from the rotation-axis
direction and at the same time the three matrices show
different symmetry properties.

By using two other properties of the previously
introduced skew-symmetric tensor associated with the
rotation-axis unit vector:

A2
n � Pn ÿ I; A3

n � ÿAn; �56�
it is possible to express a rotation entirely by this tensor
as follows:

Rn�'� � I�An sin '� 2A2
n sin2 �'=2�: �57�

This particular form facilitates the derivation of many
properties of the rotation operator, like the derivative
with respect to the rotation angle:

@'Rn�'� � AnRn�'�; �58�
a very useful result to obtain, for example, the deriva-
tives of the diffraction angle.

All the above considerations have been used to
develop analytical expressions and algorithms encapsu-
lated in a program module to handle a � goniometer
equipped with a position-sensitive planar detector
attached to the same rotating shaft that previously
carried a conventional detector. On the diffractometer
under consideration, both kinds of detectors can be
used.

The coordinate system and some other conventions
established previously (like the sense of rotations) have
been retained without modi®cation and the only
extensions introduced were related to the presence of
the imaging detector.

The convention has been adopted that the unit
vectors are described by rotations applied to other unit
vectors re¯ecting properties of the so-called perfectly
aligned diffractometer, for which these rotations reduce
to identities (see Fig. 1 for the choice of the coordinate
system).

For example, the primary-beam orientation is given
by (Kabsch, 1988)

s � ÿRz�'s
z�Ry�'s

y�ex; �59�
where the direction is chosen along the momentum
carrying vector, leading to the diffraction condition
equation (Milch & Minor, 1974), as discussed later in
this paper.

A general rotation on the � goniometer can be written
as the following non-commutative product of three
rotations:

RG�!; �; '� � R!R�R' �60�

labelled according to the commonly adopted naming
conventions. Fig. 1 indicates the adopted positive sense
of rotation. The z axis of the coordinate system coin-
cides with the rotation axis of the ! shaft, but the
remaining two shafts are general. For the description
of the � and ' shafts, a simpli®cation is achieved by
choosing the x axis in the plane de®ned by the ! and �
rotation axes. Hence, only one parameter is required to
specify the � shaft. In principle, the remaining ' rotation
axis should be given by an arbitrary unit vector (two
more parameters). However, by letting another param-
eter, called the � offset, be adjusted, an equivalent
description can be achieved by adopting a similar form
of the rotation matrix for both axes:

R � Ry�� �Rz� �Ry�ÿ� �;  � �; ': �61�

Both of the above rotations are decomposed into
products of three elementary rotations around the
laboratory-coordinate-system axes and are speci®ed by
the actual rotation angle around the z axis and one ®xed
rotation around the y axis. The ®xed rotation angles are
the two instrument parameters. Fig. 2 illustrates the
instrument parameters �� and �' with respect to the
laboratory coordinate system.

Note that the arrangement described by equation (61)
refers to an instrument with arbitrary � and ' shafts
(generalized � goniometer). An `ideal' � goniometer is
characterized by �' � 0�, which means that the ! and '
rotation axes coincide at the zero setting of the � shaft.

The ! and � rotations are elementary rotations
around the z direction:

Fig. 2. Illustation of the instrument parameters �' and ��. For an ideal
� goniometer, these instrument parameters take special values:
�' � 0� and �� � 50�. In this setting, the ' axis coincides with the !
axis at � � 0�. These conditions are very dif®cult to implement on a
real instrument. Satisfactory precision of the intersection of the axes
can be obtained with relative ease, whereas it is a laborious task to
mount the ' axis intersecting with the � axis at �� � 50�.
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R � Rz� �;  � !; �: �62�
The assumption that the detector carrying shaft, � axis, is
parallel to the ! axis re¯ects the mechanical features of
the goniometer. If necessary, it can be replaced by a
general one.

The remaining parameters relate the shaft encoder
readouts, ~ , to the actual angular position. Without lack
of generality, these relations can be chosen as simple
linear equations:

 � ~ �� ;  � !; �; '; �; �63�
de®ned for every rotating shaft and included as
parameters of the goniometer model to be found. A
useful consequence is that all derivatives with respect to
the rotation angle are the same as with respect to the
corresponding offsets.

5. Diffraction condition

To solve ef®ciently the diffraction condition equation
and simultaneously evaluate all relevant partial deriva-
tives of the diffraction angle, it is convenient to de®ne
the following function (Milch & Minor, 1974):

f �'� � rtr=2� stR�'�r; �64�
where both vectors and the rotation matrix can depend
on additional parameters. r is a reciprocal-space vector
[see equation (17)] and s represents a primary beam as a
unit-length vector. The diffraction condition reads:

f �'� � 0 �65�
and should be solved for the angle. Simultaneously, the
above equation de®nes the diffraction angle as an
implicit function of other parameters. Its derivative with
respect to any of its parameters is

@x' � ÿ@x f=@' f : �66�
The denominator is equal to

@' f � st@'R�'�r: �67�
The numerator can take one of the three possible forms
as there are no parameters involved simultaneously in
all parts of the initial function.

The ®rst derivative involves only parameters of the
vector r:

@x f � rt@xr� stR�'�@xr: �68�
The second one involves all rotations:

@y f � st@yR�'�r; �69�
and the last one the primary beam:

@z f � @zstR�'�r: �70�
As the ®rst term in the function f is the square of a
vector length, its derivatives with respect of any rotation
angles involved in this term vanish.

Assume that the vector r is given by the rotation of
another vector r0 by some rotation. Not only the length
is invariant with respect to this rotation:

kU� �r0k � kr0k; �71�
but also the following relation holds:

rt
0Ut� �@ U� �r0 � 0; �72�

which greatly simpli®es derivative calculations.
To solve the diffraction condition equation, the

rotation axis has to be speci®ed. As a ®rst step, the
following algorithm has been implemented for solving
this condition for elementary rotations.

If the selected rotation is about the z axis, the
diffraction condition has the simple form

rtr=2� stRz�'�r � 0 �73�
and is solved by the known method of converting a
linear trigonometric equation into a quadratic algebraic
one. First, the following quantities are computed:

� � rtr=2� rzsz; �74�
" � rxsx � rysy; �75�
� � rysx ÿ rxsy: �76�

The solution depends on the following discriminant:

� � �2 � "2 ÿ �2: �77�
If � is negative, there is no solution. Otherwise, there
are two solutions, possibly degenerate, which are
calculated as:

'1 � 2 tanÿ1��; �ÿ "�; �78�
'2 � 2 tanÿ1��� "; ��; �79�

where

� � ÿ�ÿ sgn����1=2: �80�
The above equations result from the numerically accu-
rate solution of a quadratic equation (Press et al., 1994).

To accommodate an arbitrary goniometer rotation,
the above evaluation can easily be extended. At ®rst, the
diffraction condition is recast into the following form:

rtr=2� stRG�'�r � 0: �81�
The goniometer rotation is decomposed into the
following product:

RG�'� � RsR�'�Rr; �82�
where the middle rotation is unspeci®ed in angle. If this
rotation is about the z axis, the above algorithm is used,
but with vectors substituted by:

st  st
m � stRs; �83�

r rm � Rrr: �84�
Similar algorithms can be derived for other elementary
rotations.
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If the crystal orientation matrix is known, the
diffraction condition for a given re¯ection reads:

f �'� � htG�h=2� stRG�'�UB�h �85�
and its partial derivatives can be evaluated with respect
to some model parameters.

The numerator of the previous generic equations
requires only one modi®cation:

@' f � st
m@'R�'�rm: �86�

The derivatives with respect to the reciprocal-lattice
parameters are:

@x f � �htBt
� � stRGU�@xB�h: �87�

The derivatives with respect to the crystal and goni-
ometer rotations read:

@y f � st@y�RGU�B�h: �88�
Finally, the derivatives with respect to the primary-beam
orientation parameters are:

@z f � @zstRGUB�h �89�
The above equations provide a valuable part of the
least-squares residual. The only missing parameters are
those used to describe the detector geometry.

6. Imaging detector

The imaging detector provides as a primary set of
observations a large number of images recorded on its
surface at given angular settings of the diffractometer.
The detector position in space is changing due to the
rotation of one of the goniometer axes (detector swing).

In what follows, the detector itself is assumed to
be properly calibrated for geometric distortions. The
detector is adequately modelled by a plane that may
change its orientation in space. The coordinates of a
point on this plane can be expressed as a linear
combination of three linearly independent vectors
de®ned in the laboratory coordinate system as follows:

v � XdX � YdY ÿ d0dO: �90�
The vectors dX and dY lie on the detector plane and
de®ne a local two-dimensional coordinate system, in
which spots have their fractional coordinates X and Y
(see Fig. 3).

The vector dO links the origin of the detector coor-
dinate system with the laboratory system. The corre-
sponding fractional coordinate d0 remains ®xed for all
spots. All three vectors de®ne a new reference frame in
space.

The origin-to-origin vector dO is usually close to the
normal of the detector plane and the degree of this
alignment can be easily veri®ed as follows. First the basis
vectors in the plane are normalized:

nI � dI=kdIk; I � X;Y: �91�

Then the plane normal vector is evaluated:

n � nX � nY ; �92�
and ®nally the required vector is given by the following
projection:

d? � nntdO: �93�
The length of this vector de®nes properly the detector
distance from the origin of the laboratory system.

The above simple analysis demonstrates that three
properly chosen vectors suf®ce to give a complete
description of the planar detector (Thomas, 1990, 1992).
The objective is to ®nd them as accurately as possible.

Let us arrange the three vectors in equation (90) as
columns of a matrix and perform its QR decomposition:

�dO; dX; dY � � UDBD: �94�
This gives an adequate description of the detector at its
zero position. As the detector can be rotated about the
diffractometer axis �, the above matrix should be
multiplied by the appropriate rotation matrix:

D� � R�UDBD; �95�
providing the complete description of the detector plane
in an arbitrary position.

The effect of the goniometer rotation on the crystal
reciprocal lattice is de®ned by the following matrix:

CG � RGUB�; �96�

Fig. 3. An ideal position-sensitive detector is adequately modeled by a
plane in space. The plane coordinates are expressed in the local two-
dimensional coordinate system dX , dY . This system is linked to the
laboratory reference system ex, ey, ez by the origin-to-origin vector
ÿdO. The plane normal ÿd? de®nes the detector distance from the
instrument center.
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revealing a close analogy between the crystal and the
detector orientation matrices.

Furthermore, let us de®ne the two matriceseD� � R�UDLD; �97�eCG � RGUL�; �98�
which are the inverse and transpose of the preceding
ones, respectively.

Let us assume that the diffractometer and detector
are at a given position and a diffraction spot is recorded.
Its two planar coordinates X and Y are given in arbi-
trary units (usually pixel dimensions). The fractional
space coordinates of the spot in the basis de®ned by
equation (90) are

p � �ÿd0;X ÿ X0;Y ÿ Y0�t; �99�
where an arbitrary origin shift �X0;Y0� on the detector
plane has been introduced to bring the pixel coordinates
close to the detector plane origin. Note that the ®rst
coordinate has a different natural length scale than the
in-plane coordinates (detector distance versus pixel
size).

The following unit-length vector is obtained in the
laboratory coordinate system:

q � D�p=kBDpk; �100�
in which both the detector position and the detector
metric are explicitly included. With the scaling of the
reciprocal-space length by the wavelength, this vector is
de®ned on the unit Ewald sphere.

If the diffractometer is positioned at the diffraction
condition of the given re¯ection, the diffracted vector is
given by

t � CGh� s; �101�
which is a unit vector on the Ewald sphere. Both above
vectors must coincide:

CGh� s � D�p=kBDpk: �102�
This equation provides a relationship between all goni-
ometer, detector and crystal parameters and is the basis
for all subsequent analysis.

The following expression is used to extract the
Cartesian coordinates of the reciprocal-space points
from the recorded spots:

rt � �qÿ s�t RG: �103�
At this stage, the crystal orientation matrix is not
necessarily known. If it is known, the Miller indices of
the re¯ection can easily be obtained.

The inverse problem is to predict the spot position for
a given re¯ection. The crystal orientation matrix should
be known and the diffractometer is assumed to be at the
diffraction position.

Let us ®rst compute the following vector:

vt � tt eD� � �p; �104�
of which the (three) fractional coordinates give the spot
position on the detector plane up to an unknown
multiplier equal to the inverse of its length.

As the ®rst fractional coordinate is one of the known
detector parameters, the above linear system can be
easily solved for the unknown spot position coordinates:

� � ÿd0=v1; �105�
X � �v2 � X0; �106�
Y � �v3 � Y0: �107�

These equations deserve special attention as they reveal
an inherent limitation of any plane-detector-geometry
calibration from diffraction data alone. This limitation
comes from the fact that the only accessible data are
from the projections alone, thus only ratios of dimen-
sions are involved. This is also apparent from equation
(102), where the vector normalization is shown expli-
citly. More details on this will be given later.

Our main objective is to design an optimization
algorithm to ®nd the geometrical model parameters. For
this purpose, two sets of equations for partial derivatives
can be written down and rearranged to emphasize the
dependence on the primary beam, the goniometer with
the attached crystal and the detector parameters.

As the reference crystal parameters are supposed to
be known, the ®rst set of derivatives,

@xht � @xqteCG; �108�
@yht � qt@y

eCG; �109�
@zht � ÿ@zsteCG; �110�

can be used to reproduce the fundamental crystal lattice
property: the integer indexing.

The second set of partial derivatives is used to
reproduce the observations themselves, which are
mainly the fractional coordinates of the recorded spots.
At this stage, the re¯ection indices are assumed to be
known.

Although the spot positions are speci®ed only by two
fractional coordinates, the derivatives depend on the
three coordinates of the vector de®ned by equation (90):

@xvt � @xCGhteD� �111�
@yvt � CGht@y

eD�; �112�
@zvt � @zsteD�: �113�

The derivatives of the spot-position coordinates are
easily calculated from these expressions.

7. Least-squares residual

The results obtained so far are combined here in a
multipart least-squares residual giving the possibility of
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optimizing the parameters of different geometrical
models from a preferably large set of observations. Each
part also has its own weighting scheme.

The ®rst part comes from the difference vectors on
the Ewald sphere, de®ned by equation (102):

�2
E � wE

P
n

kwnk2; �114�

where

wn � CGho
n � sÿD�p

o
n=kBDpo

nk �115�
is the difference between the diffracted vector and the
one derived from the observed spot position.

If necessary, a minor modi®cation leads to the alter-
native difference vector:

w0n � �CGho
n � s�kBDpo

nk ÿD�p
o
n; �116�

which is de®ned on the detector plane.
The next residual aims to reproduce as closely as

possible the observed spot positions:

�2
S � wS

P
n

��X2
n � �Y2

n�; �117�

where

�Xn � Xo
n ÿ Xn; �Yn � Yo

n ÿ Yn �118�
are the differences of the observed and calculated
fractional coordinates of the spot positions.

The model de®ciency can preclude the proper integer
indexing of the observed reciprocal-lattice points
extracted from the observed spot positions. The model
can be improved towards this requirement by mini-
mizing

�2
H � wH

P
n

�ht
n�hn; �119�

where

�hn � ho
n ÿ hn �120�

and the observed Miller indices are assumed to be
known. Finally, all observed spots should be compatible
with the diffraction angle condition

�2
D � wD

P
n

�'2
n; �121�

where

�'n � 'o
n ÿ '�ho

n� �122�
is the difference between the observed selected goni-
ometer setting angle and the diffraction angle for a given
re¯ection.

The ®rst residual de®ned by equation (114) is
completely self-contained and reinforces all relevant
requirements simultaneously. The others with appro-
priate weights can be used as penalty functions to force
the least-squares optimization to emphasize additional
features. The complete residual reads:

�2 � �2
D � �2

H � �2
S � �2

E; �123�
in which some weights can be set to zero. As all parts
never contradict each other, it is perfectly possible to
minimize it without restrictions.

The remaining issue is the proper choice of the model
parameters and de®nition of linear constraints, if
appropriate. To facilitate this task, let us summarize the
complete set of possibly varying parameters and their
assignment to the relevant variables:

U 'c
x 'c

y 'c
z

B� a� b� c� �� �� �

RG �! �� �' �� �'
s 's

y 's
z

R� ��

p d0 X0 Y0

UD 'd
x 'd

y 'd
z

BD ad bd cd �d �d d:

�124�

The complete instrument model is composed of
parameter sets describing the reference crystal, the
goniometer, the X-ray beam and the detector (see
Table 1 for a summary of symbols).

The ®rst set of re®ned parameters is related to the
control crystal. It is assumed that an approximate
orientation matrix can be found in advance. The model
de®ciencies will usually distort the lattice and here a new
orientation matrix can be computed by retaining the ®rst
(orientation) part but simultaneously overwriting the
second and imposing the necessary restrictions on the

Table 1. Summary of the parameters that may be involved
in the most general model describing a � goniometer with

attached imaging detector

Refer to Figs. 1, 2 and 3 for details of the instrument.

Crystal-related parameters:
(a) Crystal orientation (U): 'c

x; '
c
y; '

c
z

(b) Wavelength-scaled reciprocal-lattice orthonormalization (B�):
a�; b�; c�; ��; ��; �

Goniometer-related parameters:
(a) �-goniometer descriptors (RG): ��; �'
(b) Axis offsets:

(i) Crystal orienter (RG): �!; ��; �'

(ii) Detector orienter (R�): ��

(c) Primary-beam orientation (s): 's
y; '

s
z

Detector-related parameters:
(a) Link between the laboratory reference system and the local two-

dimensional coordinate system on the detector plane (origin-to-origin
distance) (p): d0

(b) Offsets of the detector plane with respect to the `natural'
coordinate system based on the imager pixels grid (assumed to be
ideal) (p): X0; Y0

(c) Detector orientation (UD): 'd
x ; '

d
y; '

d
z

(d) Detector orthonormalization (BD): ad, bd, cd, �d, �d, d
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re®ned parameters. For example, in the case of a cubic
control crystal, the only re®ned parameter in B� (in
addition to the orientation angles) will be the lattice
constant a�. No parameters will be re®ned in B� if the
lattice constant of the control crystal is known from
another experiment.

The second set of parameters is related to the goni-
ometer axes and the primary beam. In the generalized �
geometry, the goniometer parameters consist of angular
offsets �!, ��, �' and �� for each goniometer shaft and
two instrument geometry parameters �� and �'. The
unit vector describing the primary beam requires two
additional angular parameters.

Some of these parameters are redundant and have to
be ®xed on prede®ned values, usually equal to zero. For
example, the '-axis offset can be ®xed, as this is the last
rotation axis and it will be absorbed by the crystal
orientation matrix.

On this particular instrument, the primary-beam
rotation around the z direction is fully correlated with
the !-axis rotation and thus only one of these param-
eters can be re®ned.

The offset �� of the axis rotating the detector plane
can be either re®ned with the corresponding angle 'd

z

of the detector orientation ®xed or set to zero while
re®ning the general detector orientation matrix. The
third set of parameters is related to the imaging
detector. The matrix UDBD can be controlled in much
the same way as for the crystal orientation matrix.
Additional precautions are necessary to take properly
into account the relative scale of the dimensions
involved. In the most general setting, only eight par-
ameters can be re®ned compared to nine in the case of a
crystal (see Tucker, 1986). The parameters involved in
the spot-position description are de®ned by equation
(99) and include the origin-to-origin distance d0 and
pixel offsets X0 and Y0.

Some representative models will now be discussed in
detail.

In the simplest model, the orientation matrix of the
detector is a pure rotation. This means that the three
vectors dX, dY and d0 used to de®ne the detector are
orthogonal and d0 must be normal to the detector plane.
The adjustable parameters are the distance d0 and two
offsets X0 and Y0 on the detector plane. The complete
parameter set, taking into account the parameter
redundancy discussed above, is:

RG �! �� 0 �� �'
s 's

y 0

R� 0

p d0 X0 Y0

UD 'd
x 'd

y 'd
z

BD 1 1 1 �=2 �=2 �=2:

�125�

Based on this model, two further models can be
constructed. They differ only in the detector handling
part, p, UD and BD, so that the goniometer parameters
RG, s and R� are removed from the subsequent summary
equations (126) and (127). Note that the following
models focus on a subtle difference in describing the
detector with respect to the laboratory reference system.

The ®rst model illustrates the relationship between
the distance parameter and the pixel size unit. Keeping
the origin-to-origin vector length d0 and the offsets X0

Y0 ®xed [indicated in summary equation (126) by bars
on the respective parameters], one may re®ne the scale
ad in the orthonormalization matrix and the angular
components �d and d which describe the orientation of
the origin-to-origin vector with respect to the local two-
dimensional coordinate system. This local coordinate
system is assumed to be orthonormal. Evaluating the
product �d0ad gives the distance between the origins but
not necessarily measured along the detector plane
normal:

p �d0
�X0

�Y0

UD 'd
x 'd

y 'd
z

BD ad 1 1 �=2 �d d:
�126�

The last example is used to verify if the local coordinate
system on the detector plane is indeed orthogonal. Like
in the previous model, the X0 and Y0 origins are kept
®xed [indicated in summary equation (127) by bars over
these entities]. The distance scale ad is set to one in the
orthogonalization matrix, so that the distance is re®ned
directly as d0. Only one in-plane pixel size (here bd) is set
to one, while the second one and all angles are re®ned.
The model setting is given in the following summary:

p d0
�X0

�Y0

UD 'd
x 'd

y 'd
z

BD 1 1 cd �d �d d:
�127�

The last model is well suited to verify if the geometrical
correction of the detector is correct. The cd parameter
being very close to one and �d being close to the right
angle shows that the geometrical correction is appro-
priate.

8. Tests and results

A least-squares optimization program has been written
based on the previously presented results. All deriva-
tives have been carefully tested numerically (Press et al.,
1994). A number of simulations have been performed to
gain insight on how accurately and under what condi-
tions the method can reproduce the correct geometrical
model of the imaging diffractometer.

A reference parameter set was selected to simulate
a perfectly aligned system. The parameters chosen
represent typical working parameters of the KM4CCD
system. This parameter set is shown below:
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RG 0 0 0 5�=18 0

s 0 0

R� 0

p 1270 512 512

UD 0 0 0

BD 1 1 1 �=2 �=2 �=2:

�128�

Synthetic data sets were calculated using a known
crystal lattice and orientation. The data sets consisted of
the re¯ection index, spot coordinates and their angular
goniometer settings. 950 calculated data were used for
the simulations. The least-squares minimization was
initiated from a distorted goniometer model using a
restricted implementation of the Levenberg±Marquardt
method (the damping parameter ®xed).

On error-free data sets, the method is capable of
exactly reproducing the original model parameters and
converges quickly with a large radius of convergence.
The crystal orientation and lattice parameters were
reproduced correctly. Note that it is advisable to use a
cubic reference crystal to limit the orthonormalization
matrix B� to a single re®neable parameter only.

In the next series of tests, random errors of growing
amplitude have been added to the spot positions and/or
diffraction angles in order to simulate the error of data
extraction from actual diffraction images. The re®ne-
ments have been performed ten times for ten ®xed error
amplitudes using a system random-number generator.
The re®nement process showed good convergence with
all error amplitudes but the model parameters thus
obtained gradually degraded with respect to the known
model as the error amplitude increased. The progressive
degradation could be observed on all model parameters.
The unit-cell parameters of the cubic reference crystal
displayed distortions when applying the ®tted model to
the simulated raw data containing random error. The
relation between the error magnitude and the model
parameter degradation (measured by the difference
between the ideal and ®tted parameters) is not fully
understood. Fig. 4 gives a graphical representation of the
distortions of the lattice parameters a and � for the set of
ten error amplitudes and ten random trials each.

After the tests described above, the algorithm was
integrated into the diffractometer control software of
the KM4CCD system and further tests were conducted
on the actual crystal data.

First, ten different data sets were collected using the
same cubic reference sample. The data sets were
composed of 15 randomly oriented goniometer settings,
each one covering a range of 10±20�. For all sets, the
model parameters given under summary equation (125)
were re®ned. Table 2 gives a summary of the experi-
ments and the model parameters thus obtained. The
model parameters reproduce quite well in the different
data sets but some parameter spread is also noticeable.
As the `true' geometrical model of the goniometer is

unknown, it is now impossible to give a ®nal model
validation. Applying the ®tted model to another known
sample and recording its lattice parameters cross vali-
dates the instrument model. It was found that the model
obtained from the reference crystal is transferable to
other samples. An example is given in Table 3.

From the experimental ®ndings, we can conclude that
the cells obtained from a typical rotation-method data
set are less accurate than the data from a well aligned
conventional diffractometer. The precision of the cell
data extracted from the rotation-method data depends
critically on the frame width and the data spanning.
Usually, data sets with several goniometer settings
improve the cell quality. For typical frame widths of
0.5±2�, the cell deformations do not exceed 0.05� for a
well spanned data set. This precision allows Bravais-cell
extraction with a high level of con®dence.

For the rotation-method data collection, two types of
data sets have generally to be distinguished: wide-range
scans for intensity extraction and short-range scans for
peak-position extraction. The borderline between the
two types of acquisition is diffuse. In general, intensities
are collected from a few goniometer settings only, the
extreme case being a one-axis spindle machine with
symmetric detector (typical imaging-plate set-up). These
data sets with limited goniometer-setting variation allow
only a subset of parameters to be re®ned. On several
data sets, we attempted to improve the current model
found from the reference crystal by re®ning relevant
model parameters on the peak data of the crystal under
investigation (usually of low symmetry). The re®nement
may slightly improve the cell parameters, but results
from the model thus obtained may lose their transfer-
ability.

The origins of the unit-cell deformation, as seen in
Fig. 4, are linked to the uncertainty of the assignment
of the diffraction angle and spot position. Compared
to the scan widths applied during the centering
procedure of a conventional diffractometer, the scan
widths applied in the rotation method are one or two
orders of magnitude bigger (of the order of 0.1±2�).
The assignment of the peak maximum within the
frame range is arbitrary, leading to an average
assignment error of approximately half of the frame
width. The same is true for the assignment of the spot
position. In our software implementation, the centroid
position is used. This position is de®ned with respect
to the maximum of a ®xed size extraction window
(typically 7 � 7 pixels). Additionally, area detectors
may suffer from systematic geometric distortions due
to the readout mechanics (imaging plate), ®ber-optic
taper deformations (CCD detectors) and electric ®eld
irregularities (wire chambers and electron tube area
detectors), to name a few. Our experimental system
(CCD detector with attached ®ber-optic taper) has
been calibrated by an optical method described in
Paciorek et al. (1999), which allows peak-position
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reconstruction from the deformed pattern with an error
of less than one pixel.

Finally, the re®nement method was applied to data
sets from the same sample for different wavelengths.
The goal of this test was to see whether the goniometer
constants �� and �', which are wavelength independent,
could be reproduced in all data sets. We used the typical
crystallographic wavelengths Cu, Mo and Ag. The

instrument constants �' and �� were reproduced within
standard uncertainties. Table 4 summarizes the ®ndings.

9. Concluding remarks

This work presents a general geometric model for
imaging diffractometers. All the necessary expressions
are presented for the optimization by least squares. The

Fig. 4. Distortion of the lattice parameters a and � as a function of random-error magnitude. The plots contain data from 100 synthetic data sets.
The spot positions of the ideal reference model [see summary equation (128)] are deteriorated by a zero-mean random error of ten different
magnitudes derived from a random-number generator. The magnitudes are scaled to represent the peak extraction uncertainty in the typical
2 � 2 binning readout mode of the CCD detector on the KM4CCD system. Each data set was then used to ®nd the complete goniometer model
[summary equation (128) plus reciprocal-lattice scaling a� under cubic constraint] by least-squares optimization. The ®tted model was used to
®nd the best unconstrained UB�from the deteriorated data. The plots show the increasing spead of the lattice distortions in both lattice
dimension and cell angles. For typical frame widths of 0.5±2�, the cell-angle deformations do not exceed 0.05� for a well spanned data set.
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Table 2. Calibration of the KM4CCD system using Mo K� wavelength from randomly composed runs

All data sets consist of 15 randomly oriented goniometer settings covering a scanning range of 10±20� each, Texp � 5 s, !step � 0:5�. Note that the model re®nement was performed under cubic
lattice constraint (re®ned value a�). The lattice parameters a, b, c, �, � and  are taken from a constraint-free linear least-squares re®nement on the raw re¯ection data using the previously re®ned
model.

Parameter 1 2 3 4 5 6 7 8 9 10 Average
Standard
deviation

Nobs 935 958 963 959 962 807 971 927 941 999
�2 0.00986 0.009668 0.008974 0.00884 0.008969 0.010086 0.00966 0.009621 0.009597 0.009605
�! 0.053 0.036 0.053 0.056 0.056 0.040 0.049 0.060 0.055 0.054 0.051 0.007
�� 0.00 0.02 0.00 0.00 0.00 0.03 0.01 ÿ0.01 0.00 0.01 0.01 0.01
�� 50.119 50.092 50.106 50.106 50.118 50.101 50.090 50.130 50.113 50.10761 50.108 0.012
�' ÿ0.159 ÿ0.175 ÿ0.164 ÿ0.173 ÿ0.162 ÿ0.171 ÿ0.183 ÿ0.150 ÿ0.167 ÿ0.172 ÿ0.168 0.009
�� ÿ0.214 ÿ0.204 ÿ0.237 ÿ0.242 ÿ0.219 ÿ0.245 ÿ0.215 ÿ0.220 ÿ0.196 ÿ0.200 ÿ0.219 0.017
d0 65.020 65.021 65.020 65.021 65.018 65.030 65.028 65.021 65.019 65.016 65.021 0.004
X0 501.8 502.0 501.4 501.2 501.7 501.2 501.8 501.7 502.2 502.1 501.7 0.3
Y0 519.7 519.1 518.6 519.0 519.4 518.4 519.4 519.9 519.3 519.7 519.2 0.5
'd

x ÿ0.39 ÿ0.40 ÿ0.39 ÿ0.38 ÿ0.39 ÿ0.40 ÿ0.39 ÿ0.39 ÿ0.39 ÿ0.39 ÿ0.39 0.01
'd

y ÿ0.06 ÿ0.05 ÿ0.01 ÿ0.03 ÿ0.05 ÿ0.02 ÿ0.07 ÿ0.06 ÿ0.05 ÿ0.07 ÿ0.05 0.02
's

y 0.01 ÿ0.02 0.00 0.00 0.00 ÿ0.02 ÿ0.02 0.02 0.00 0.00 0.00 0.01
'c

x 98.40 98.39 98.41 98.40 98.41 98.40 98.40 98.43 98.41 98.39 98.40 0.01
'c

y 38.84 38.86 38.84 38.85 38.84 38.85 38.86 38.82 38.84 38.84 38.84 0.01
'c

z ÿ166.07 ÿ166.06 ÿ166.07 ÿ166.07 ÿ166.08 ÿ166.07 ÿ166.08 ÿ166.09 ÿ166.08 ÿ166.07 ÿ166.07 0.01
a� 0.082210 0.082216 0.082214 0.082210 0.082209 0.082206 0.082206 0.082208 0.082210 0.082213 0.082210 0.000003
a (AÊ ) 12.163 (1) 12.164 (1) 12.162 (1) 12.163 (1) 12.163 (1) 12.164 (2) 12.164 (1) 12.163 (1) 12.164 (1) 12.161 (1)
b (AÊ ) 12.162 (1) 12.161 (1) 12.162 (1) 12.163 (1) 12.162 (1) 12.161 (2) 12.161 (1) 12.164 (1) 12.162 (1) 12.163 (1)
c (AÊ ) 12.163 (1) 12.163 (1) 12.164 (1) 12.164 (1) 12.165 (1) 12.166 (2) 12.166 (1) 12.162 (1) 12.163 (1) 12.163 (1)
� (�) 90.027 (9) 90.016 (9) 90.020 (9) 90.024 (9) 90.016 (9) 90.01 (1) 90.021 (9) 90.035 (9) 90.036 (9) 90.042 (9)
� (�) 89.956 (9) 89.970 (9) 89.977 (9) 89.972 (9) 89.964 (9) 89.98 (1) 89.959 (9) 89.961 (9) 89.953 (9) 89.952 (9)
 (�) 90.025 (9) 90.033 (9) 90.035 (9) 90.036 (9) 90.032 (9) 90.05 (1) 90.025 (9) 90.034 (9) 90.022 (9) 90.020 (9)
V (AÊ 3) 1799.21 1799.17 1799.14 1799.46 1799.51 1799.6 1799.75 1799.45 1799.46 1799.08
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model has been exempli®ed by an implementation on
the KM4CCD system, a � goniometer with CCD
detector. It was tailored towards the requirements of
this particular instrument. However, the expressions
presented allow a straightforward extension towards
more general instruments like goniometers with two-
axis � arms (goniometers for experimental phase
determination). Furthermore, the model is also applic-
able to other diffraction geometries like Euler-cradle
goniometers and ®xed-axis machines (one-, two- and
three-axis goniometers). If the imaging-detector com-
ponent is ignored, the model may also be applied to
conventional goniometers of any complexity.

The model has been successfully applied in the cali-
bration of the KM4CCD system. The proposed refer-
ence-crystal calibration scheme allows the extraction of
high-quality cell data from imaging diffractometers. The
experimental and simulation data revealed that the
uncertainty in extraction of diffraction angles and peak
positions may impair both the unit-cell quality (lattice
deformation) and the instrument model. A good
instrument calibration can be obtained by using a high-
symmetry standard crystal (cubic is preferred owing to
its single-parameter orthonormalization matrix) along
with reasonably narrow frame widths (0.25±1�). The
calibration data set should include a variety of goni-
ometer settings (at least 10±15) spanning isotropically
the Ewald sphere. This data set can be used to optimize
all relevant instrument parameters and can be used for
subsequent experiments.

Another potential extension of the calibration
procedure described here is the use of a separate
experiment to obtain the geometric beam-detector
relation: By measuring a powder pattern of a high-
symmetry sample, additional observations for the highly
correlated beam-detector relations may be obtained.
Algorithms for ®tting ellipse patterns are readily avail-
able (Pilu et al., 1996).
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The ®nancial support of the Swiss National Science
Foundation (grant No. 20-46666.96) is gratefully
acknowledged.

References

Arndt, U. W. & Wonacott, A. J. (1977). Editors. The Rotation
Method in Crystallography. Amsterdam: North Holland.

Bernal, J. D. (1923). Occasional Paper No. 1, Department of
Crystallography, Birkbeck College, London (1981).

Bricogne, G. (1986). Proceedings of the ECC Cooperative
Workshop on Position-Sensitive Detector Software (Phases I
and II), LURE, 26 May±7 June 1986, pp. 109±111.

Busing, W. R. & Levy, H. A. (1967). Acta Cryst. 22, 457±464.
Christensen, A. T. & Thom, E. (1971). Acta Cryst. B27,

581±586.
Diamond, R. (1990). Proc. R. Soc. London Ser. A, 428,

451±472.
Golub, G. H. & Van Loan, C. F. (1996). Matrix Computations,

3rd ed. Johns Hopkins Studies in the Mathematical Sciences.
Kabsch, W. (1988). J. Appl. Cryst. 21, 67±71.
Larson, A. C. & Cromer, D. T. (1967). Acta Cryst. 22, 793±800.

Table 3. Example of a lattice determination using a
calibration model from a cubic reference crystal applied
to `Ylid', 2-dimethylsulfuranylidene-1,3-indanedione

(Christensen & Thom, 1971)

Experimental details: the 650 peak positions are extracted from a
complete data collection composed of three goniometer settings
covering 110±250� each.

Parameter Ylid (Mo)

Nobs 650
Nframes 434
Texp �s� 25
!step (�) 1.2
a (AÊ ) 5.978 (1)
b (AÊ ) 9.054 (2)
c (AÊ ) 18.425 (3)
� (�) 90.00 (2)
� (�) 89.99 (2)
 (�) 90.01 (2)
V (AÊ 3) 997.21

Table 4. Calibration of the KM4CCD system using three
different wavelengths

Reference crystal alum KAl(SO4)2 � 12H2O (Larson & Cromer, 1967).
Note that the instrument constants �' and ��, which are wavelength
independent, reproduce within standard uncertainties The deviations
of the lattice constants determined with Ag radiation can be attributed
to the different bandpass (low monochromator glancing angle) of the
graphite monochromator for this wavelength as compared to Cu and
Mo.

Parameter Cu Mo Ag

Nobs 604 1522 1111
Nframes 600 750 300
Texp (s) 10 4 15
!step (�) 0.5 0.2 0.5
�2 0.014 0.014 0.019
�! (�) 0.13 (4) ÿ0.00 (2) 0.05 (3)
�� (�) 0.04 (3) 0.12 (2) 0.03 (1)
�� (�) 50.08 (3) 50.11 (2) 50.06 (3)
�' (�) ÿ0.04 (3) 0.05 (2) ÿ0.02 (3)
�� (�) 0.3 (2) 0.2 (1) 0.3 (1)
d0 (mm) 71.58 (5) 71.55 (3) 71.51 (4)
X0 (pixels) 520 (4) 517 (2) 520 (2)
Y0 (pixels) 486 (4) 486 (2) 485 (2)
'd

x (�) 0.16 (4) 0.13 (2) 0.17 (2)
'd

y (�) 0.27 (2) 0.20 (1) 0.27 (1)
's

y (�) 0.01 (5) ÿ0.04 (2) ÿ0.03 (2)
a� (AÊ ÿ1) 0.8221 (2) 0.8218 (2) 0.8207 (3)
a (AÊ ) 12.164 (3) 12.164 (2) 12.185 (2)
b (AÊ ) 12.167 (3) 12.165 (2) 12.185 (2)
c (AÊ ) 12.166 (3) 12.173 (3) 12.182 (2)
� (�) 89.98 (2) 90.00 (1) 90.03 (1)
� (�) 89.98 (2) 90.03 (1) 90.01 (1)
 (�) 89.98 (2) 90.01 (1) 90.02 (1)
V (AÊ 3) 1800.45 1801.33 1808.68
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